Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38559184

ABSTRACT

Background: Sleep-wake dysfunction is an early and common event in Alzheimer's disease (AD). The lateral hypothalamic area (LHA) regulates the sleep and wake cycle through wake-promoting orexinergic and sleep-promoting melanin-concentrating hormone (MCH) neurons. These neurons share close anatomical proximity with functional reciprocity. This study investigated the pattern of neuronal loss (ORX and MCH) in the LHA in AD. Understanding the degeneration pattern of these neurons will be instrumental in designing potential therapeutics to slow down the disease progression and remediate the sleep-wake dysfunction in AD. Methods: Postmortem human brain tissue of subjects with AD (across progressive stages) and controls were examined using unbiased stereology. Neuronal counting was done using double immunohistochemistry with ORX, pTau (CP13), and MCH, pTau (CP13) labeled neurons on formalin-fixed, celloidin-embedded tissue. Results: We observed a progressive decline in orexinergic (ORX) neurons and a relative preservation of the melanin-concentrating hormone (MCH) neurons. The decline in ORX neurons was seen from BB 2 (56%, p=0.0634). By the late stage of the disease (BB 5-6), the decline in ORX neurons was 76% (p=0.0043). In contrast, the MCH neurons demonstrated an insignificant decline by BB 6 (25%, p=0.1313). Conclusions: Our data demonstrated very early substantial ORX neuronal loss in the LHA, while MCH neurons were resilient to AD pTau accumulation. Interventions capable of preventing ORX neuronal loss and inhibiting pTau accumulation in the LHA can reinstate sleep-wake dysfunction in AD and possibly prevent the progression of the disease.

2.
Cereb Cortex ; 33(13): 8654-8666, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37106573

ABSTRACT

The human cerebral cortex is one of the most evolved regions of the brain, responsible for most higher-order neural functions. Since nerve cells (together with synapses) are the processing units underlying cortical physiology and morphology, we studied how the human neocortex is composed regarding the number of cells as a function of sex and age. We used the isotropic fractionator for cell quantification of immunocytochemically labeled nuclei from the cerebral cortex donated by 43 cognitively healthy subjects aged 25-87 years old. In addition to previously reported sexual dimorphism in the medial temporal lobe, we found more neurons in the occipital lobe of men, higher neuronal density in women's frontal lobe, but no sex differences in the number and density of cells in the other lobes and the whole neocortex. On average, the neocortex has ~10.2 billion neurons, 34% in the frontal lobe and the remaining 66% uniformly distributed among the other 3 lobes. Along typical aging, there is a loss of non-neuronal cells in the frontal lobe and the preservation of the number of neurons in the cortex. Our study made possible to determine the different degrees of modulation that sex and age evoke on cortical cellularity.


Subject(s)
Cerebral Cortex , Neocortex , Male , Humans , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Temporal Lobe , Neurons , Occipital Lobe/anatomy & histology , Frontal Lobe/anatomy & histology , Cell Count
3.
Alzheimers Dement ; 19(4): 1372-1382, 2023 04.
Article in English | MEDLINE | ID: mdl-36150075

ABSTRACT

INTRODUCTION: Neuropsychiatric symptoms (NPS) are common in Lewy body disease (LBD), but their etiology is poorly understood. METHODS: In a population-based post mortem study neuropathological data was collected for Lewy body (LB) neuropathology, neurofibrillary tangles (NFT), amyloid beta burden, TDP-43, lacunar infarcts, cerebral amyloid angiopathy (CAA), and hyaline atherosclerosis. Post mortem interviews collected systematic information regarding NPS and cognitive status. A total of 1038 cases were included: no pathology (NP; n = 761), Alzheimer's disease (AD; n = 189), LBD (n = 60), and AD+LBD (n = 28). RESULTS: Hallucinations were associated with higher LB Braak stages, while higher NFT Braak staging was associated with depression, agitation, and greater number of symptoms in the Neuropsychiatric Inventory. Cases with dual AD+LBD pathology had the highest risk of hallucinations, agitation, apathy, and total symptoms but a multiplicative interaction between these pathologies was not significant. DISCUSSION: LB and AD pathology contribute differentially to NPS likely with an additive process contributing to the increased burden of NPS.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Humans , Amyloid beta-Peptides , Alzheimer Disease/pathology , Lewy Body Disease/pathology , Neurofibrillary Tangles/pathology , Hallucinations/complications , Hallucinations/pathology
4.
Acta Neuropathol ; 144(1): 27-44, 2022 07.
Article in English | MEDLINE | ID: mdl-35697880

ABSTRACT

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer's disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese-American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia-broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with "frequent" neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aß phase = 0 (lacking detectable Aß plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer's disease neuropathology.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Nervous System Diseases , Aged, 80 and over , Alzheimer Disease/genetics , Amyloid , Autopsy , DNA-Binding Proteins , Humans , Male , Plaque, Amyloid/pathology
5.
Alzheimers Dement ; 18(11): 2079-2087, 2022 11.
Article in English | MEDLINE | ID: mdl-34978148

ABSTRACT

INTRODUCTION: Education, and less frequently occupation, has been associated with lower dementia risk in studies from high-income countries. We aimed to investigate the association of cognitive impairment with education and occupation in a low-middle-income country sample. METHODS: In this cross-sectional study, cognitive function was assessed by the Clinical Dementia Rating sum of boxes (CDR-SOB). We investigated the association of occupation complexity and education with CDR-SOB using adjusted linear regression models for age, sex, and neuropathological lesions. RESULTS: In 1023 participants, 77% had < 5 years of education, and 56% unskilled occupations. Compared to the group without education, those with formal education had lower CDR-SOB (1-4 years: ß $\beta \;$ = -0.99, 95% confidence interval [CI] = -1.85; -0.14, P = .02; ≥5 years: ß $\beta \;$ = -1.42, 95% CI = -2.47; -0.38, P = .008). Occupation complexity and demands were unrelated to cognition. DISCUSSION: Education, but not occupation, was related to better cognitive abilities independent of the presence of neuropathological insults.


Subject(s)
Cognitive Dysfunction , Cognitive Reserve , Humans , Cross-Sectional Studies , Cognitive Dysfunction/epidemiology , Educational Status , Occupations , Cognition
6.
J Neural Transm (Vienna) ; 129(1): 95-103, 2022 01.
Article in English | MEDLINE | ID: mdl-34966974

ABSTRACT

Bipolar disorder shares symptoms and pathological pathways with other neurodegenerative diseases, including frontotemporal dementia (FTD). Since TAR DNA-binding protein 43 (TDP-43) is a neuropathological marker of frontotemporal dementia and it is involved in synaptic transmission, we explored the role of TDP-43 as a molecular feature of bipolar disorder (BD). Homogenates were acquired from frozen hippocampus of postmortem brains of bipolar disorder subjects. TDP-43 levels were quantified using an ELISA-sandwich method and compared between the postmortem brains of bipolar disorder subjects and age-matched control group. We found higher levels of TDP-43 protein in the hippocampus of BD (n = 15) subjects, when compared to controls (n = 15). We did not find associations of TDP-43 with age at death, postmortem interval, or age of disease onset. Our results suggest that protein TDP-43 may be potentially implicated in behavioral abnormalities seen in BD. Further investigation is needed to validate these findings and to examine the role of this protein during the disease course and mood states.


Subject(s)
Bipolar Disorder , Frontotemporal Dementia , Bipolar Disorder/pathology , Brain/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/diagnosis , Hippocampus/pathology , Humans
7.
ASN Neuro ; 13: 17590914211018117, 2021.
Article in English | MEDLINE | ID: mdl-34056948

ABSTRACT

One hallmark of human aging is increased brain inflammation represented by glial activation. With age, there is also diminished function of the adaptive immune system, and modest decreases in circulating B- and T-lymphocytes. Lymphocytes traffic through the human brain and reside there in small numbers, but it is unknown how this changes with age. Thus we investigated whether B- and T-lymphocyte numbers change with age in the normal human brain. We examined 16 human subjects in a pilot study and then 40 human subjects from a single brain bank, ranging in age from 44-96 years old, using rigorous criteria for defining neuropathological changes due to age alone. We immunostained post-mortem cortical tissue for B- and T-lymphocytes using antibodies to CD20 and CD3, respectively. We quantified cell density and made a qualitative assessment of cell location in cortical brain sections, and reviewed prior studies. We report that density and location of both B- and T-lymphocytes do not change with age in the normal human cortex. Solitary B-lymphocytes were found equally in intravascular, perivascular, and parenchymal locations, while T-lymphocytes appeared primarily in perivascular clusters. Thus, any change in number or location of lymphocytes in an aging brain may indicate disease rather than normal aging.


Subject(s)
Adaptive Immunity/physiology , Aging/metabolism , B-Lymphocytes/metabolism , Cerebral Cortex/metabolism , T-Lymphocytes/metabolism , Adult , Aged , Aged, 80 and over , Cell Count/methods , Cell Count/trends , Female , Humans , Male , Middle Aged , Pilot Projects
9.
Mol Neurobiol ; 57(3): 1473-1483, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31760608

ABSTRACT

Alzheimer's disease (AD) is the main cause of dementia in the elderly. Although activation of brain insulin signaling has been shown to be neuroprotective, to preserve memory in AD models, and appears beneficial in patients, the role of insulin-like growth factor 1 (IGF1) remains incompletely understood. We found reduced active/inactive IGF1 ratio and increased IGF1R expression in postmortem hippocampal tissue from AD patients, suggesting impaired brain IGF1 signaling in AD. Active/inactive IGF-1 ratio was also reduced in the brains of mouse models of AD. We next investigated the possible protective role of IGF1 in AD models. We used a recombinant adenoviral vector, RAd-IGF1, to drive the expression of IGF1 in primary hippocampal neuronal cultures prior to exposure to AßOs, toxins that accumulate in AD brains and have been implicated in early synapse dysfunction and memory impairment. Cultures transduced with RAd-IGF1 showed decreased binding of AßOs to neurons and were protected against AßO-induced neuronal oxidative stress and loss of dendritic spines. Significantly, in vivo transduction with RAd-IGF1 blocked memory impairment caused by intracerebroventricular (i.c.v.) infusion of AßOs in mice. Our results demonstrate altered active IGF1 and IGF1R levels in AD hippocampi, and suggest that boosting brain expression of IGF1 may comprise an approach to prevent neuronal damage and memory loss in AD.


Subject(s)
Adenoviridae/pathogenicity , Alzheimer Disease/metabolism , Hippocampus/metabolism , Insulin-Like Growth Factor I/metabolism , Memory Disorders/prevention & control , Adenoviridae/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/virology , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Female , Humans , Male , Memory/physiology , Memory Disorders/metabolism , Mice , Neurons/metabolism , Synapses/metabolism
10.
Brain Pathol ; 29(6): 771-781, 2019 11.
Article in English | MEDLINE | ID: mdl-30861605

ABSTRACT

OBJECTIVE: To compare neuropathological correlates of cognitive impairment between very old and younger individuals from a Brazilian clinicopathological study. METHODS: We assessed the frequency of neuropathological lesions and their association with cognitive impairment (Clinical Dementia Rating scale ≥0.5) in the 80 or over age group compared to younger participants, using logistic regression models adjusted for sex, race and education. RESULTS: Except for infarcts and siderocalcinosis, all neuropathological lesions were more common in the 80 or over age group (n = 412) compared to 50-79 year olds (n = 677). Very old participants had more than twice the likelihood of having ≥2 neuropathological diagnoses than younger participants (OR = 2.66, 95% CI = 2.03-3.50). Neurofibrillary tangles, infarcts and hyaline arteriolosclerosis were associated with cognitive impairment in the two age groups. Siderocalcinosis was associated with cognitive impairment in the younger participants only, while Lewy body disease was associated with cognitive impairment in the very old only. In addition, we found that the association of infarcts and multiple pathologies with cognitive impairment was attenuated in very old adults (Infarcts: P for interaction = 0.04; and multiple pathologies: P = 0.05). However, the predictive value for the aggregate model with all neuropathological lesions showed similar discrimination in both age groups [Area under Receiver Operating Characteristic curve (AUROC) = 0.778 in younger participants and AUROC = 0.765 in the very old]. CONCLUSION AND RELEVANCE: Despite a higher frequency of neuropathological findings in the very old group, as found in studies with high-income populations, we found attenuation of the effect of infarcts rather than neurofibrillary tangles and plaques as reported previously.


Subject(s)
Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Neuropathology/methods , Aged , Aged, 80 and over , Autopsy , Brain/pathology , Brazil/epidemiology , Cognition Disorders/pathology , Female , Humans , Lewy Body Disease/pathology , Male , Middle Aged , Neurofibrillary Tangles/pathology , Neuropsychological Tests , Plaque, Amyloid/pathology , ROC Curve
11.
Neurobiol Aging ; 73: 161-170, 2019 01.
Article in English | MEDLINE | ID: mdl-30359878

ABSTRACT

Accumulation of oxidative mitochondrial DNA (mtDNA) damage and impaired base excision repair (BER) in brains have been associated with Alzheimer's disease (AD). However, it is still not clear how these affect mtDNA stability, as reported levels of mtDNA mutations in AD are conflicting. Thus, we investigated whether alterations in BER correlate with mtDNA instability in AD using postmortem brain samples from cognitively normal AD subjects and individuals who show neuropathological features of AD, but remained cognitively normal (high-pathology control). To date, no data on DNA repair and mtDNA stability are available for these individuals. BER activities, mtDNA mutations, and mtDNA copy number were measured in the nuclear and mitochondrial extracts. Significantly lower uracil DNA glycosylase activity was detected in nuclear and mitochondrial extracts from AD subjects, while apurinic/apyrimidinic endonuclease activity was similar in all groups. Although mtDNA mutation frequency was similar in all groups, mtDNA copy number was significantly decreased in the temporal cortex of AD brains but not of high-pathology control subjects. Our results show that lower mitochondrial uracil DNA glycosylase activity does not result in increased mutagenesis, but rather in depletion of mtDNA in early-affected brain regions during AD development.


Subject(s)
Alzheimer Disease/genetics , Brain/metabolism , DNA Repair/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Female , Gene Dosage , Humans , Male , Middle Aged , Mutation , Oxidative Stress/genetics , Temporal Lobe/metabolism , Uracil-DNA Glycosidase/metabolism
12.
J Neuropathol Exp Neurol ; 76(7): 605-619, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28591867

ABSTRACT

Aging-related tau astrogliopathy (ARTAG) is a recently introduced terminology. To facilitate the consistent identification of ARTAG and to distinguish it from astroglial tau pathologies observed in the primary frontotemporal lobar degeneration tauopathies we evaluated how consistently neuropathologists recognize (1) different astroglial tau immunoreactivities, including those of ARTAG and those associated with primary tauopathies (Study 1); (2) ARTAG types (Study 2A); and (3) ARTAG severity (Study 2B). Microphotographs and scanned sections immunostained for phosphorylated tau (AT8) were made available for download and preview. Percentage of agreement and kappa values with 95% confidence interval (CI) were calculated for each evaluation. The overall agreement for Study 1 was >60% with a kappa value of 0.55 (95% CI 0.433-0.645). Moderate agreement (>90%, kappa 0.48, 95% CI 0.457-0.900) was reached in Study 2A for the identification of ARTAG pathology for each ARTAG subtype (kappa 0.37-0.72), whereas fair agreement (kappa 0.40, 95% CI 0.341-0.445) was reached for the evaluation of ARTAG severity. The overall assessment of ARTAG showed moderate agreement (kappa 0.60, 95% CI 0.534-0.653) among raters. Our study supports the application of the current harmonized evaluation strategy for ARTAG with a slight modification of the evaluation of its severity.


Subject(s)
Aging/pathology , Astrocytes/metabolism , Astrocytes/pathology , Tauopathies/pathology , tau Proteins/metabolism , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Severity of Illness Index
13.
PLoS Med ; 14(3): e1002267, 2017 03.
Article in English | MEDLINE | ID: mdl-28350821

ABSTRACT

BACKGROUND: Clinicopathological studies are important in determining the brain lesions underlying dementia. Although almost 60% of individuals with dementia live in developing countries, few clinicopathological studies focus on these individuals. We investigated the frequency of neurodegenerative and vascular-related neuropathological lesions in 1,092 Brazilian admixed older adults, their correlation with cognitive and neuropsychiatric symptoms, and the accuracy of dementia subtype diagnosis. METHODS AND FINDINGS: In this cross-sectional study, we describe clinical and neuropathological variables related to cognitive impairment in 1,092 participants (mean age = 74 y, 49% male, 69% white, and mean education = 4 y). Cognitive function was investigated using the Clinical Dementia Rating (CDR) and the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE); neuropsychiatric symptoms were evaluated using the Neuropsychiatric Inventory (NPI). Associations between neuropathological lesions and cognitive impairment were investigated using ordinal logistic regression. We developed a neuropathological comorbidity (NPC) score and compared it to CDR, IQCODE, and NPI scores. We also described and compared the frequency of neuropathological diagnosis to clinical diagnosis of dementia subtype. Forty-four percent of the sample met criteria for neuropathological diagnosis. Among these participants, 50% had neuropathological diagnoses of Alzheimer disease (AD), and 35% of vascular dementia (VaD). Neurofibrillary tangles (NFTs), hippocampal sclerosis, lacunar infarcts, hyaline atherosclerosis, siderocalcinosis, and Lewy body disease were independently associated with cognitive impairment. Higher NPC scores were associated with worse scores in the CDR sum of boxes (ß = 1.33, 95% CI 1.20-1.46), IQCODE (ß = 0.14, 95% CI 0.13-0.16), and NPI (ß = 1.74, 95% CI = 1.33-2.16). Compared to neuropathological diagnoses, clinical diagnosis had high sensitivity to AD and high specificity to dementia with Lewy body/Parkinson dementia. The major limitation of our study is the lack of clinical follow-up of participants during life. CONCLUSIONS: NFT deposition, vascular lesions, and high NPC scorewere associated with cognitive impairment in a unique Brazilian sample with low education. Our results confirm the high prevalence of neuropathological diagnosis in older adults and the mismatch between clinical and neuropathological diagnoses.


Subject(s)
Dementia/epidemiology , Aged , Aged, 80 and over , Alzheimer Disease/epidemiology , Alzheimer Disease/pathology , Brazil/epidemiology , Cognition , Cross-Sectional Studies , Dementia/pathology , Dementia, Vascular/epidemiology , Dementia, Vascular/pathology , Female , Humans , Male , Middle Aged
14.
Alzheimer Dis Assoc Disord ; 30(4): 310-317, 2016.
Article in English | MEDLINE | ID: mdl-27082848

ABSTRACT

BACKGROUND: Mutations in GRN (progranulin) and MAPT (microtubule-associated protein tau) are among the most frequent causes of monogenic frontotemporal dementia (FTD), but data on the frequency of these mutations in regions such as Latin America are still lacking. OBJECTIVE: We aimed to investigate the frequencies of GRN and MAPT mutations in FTD cohorts from 2 Brazilian dementia research centers, the University of Sao Paulo and the Federal University of Minas Gerais medical schools. METHODS: We included 76 probands diagnosed with behavioral-variant FTD (n=55), semantic-variant Primary Progressive Aphasia (PPA) (n=11), or nonfluent-variant PPA (n=10). Twenty-five percent of the cohort had at least 1 relative affected with FTD. RESULTS: Mutations in GRN were identified in 7 probands, and in MAPT, in 2 probands. We identified 3 novel GRN mutations (p.Q130X, p.317Afs*12, and p.K259Afs*23) in patients diagnosed with nonfluent-variant PPA or behavioral-variant FTD. Plasma progranulin levels were measured and a cutoff value of 70 ng/mL was found, with 100% sensitivity and specificity to detect null GRN mutations. CONCLUSIONS: The frequency of GRN mutations was 9.6% and that of MAPT mutations was 7.1%. Among familial cases of FTD, the frequency of GRN mutations was 31.5% and that of MAPT mutations was 10.5%.


Subject(s)
Frontotemporal Dementia/genetics , Intercellular Signaling Peptides and Proteins/genetics , tau Proteins/genetics , Age of Onset , Brain/pathology , Brazil , Female , Frontotemporal Dementia/diagnostic imaging , Genetic Association Studies , Humans , Male , Middle Aged , Mutation , Primary Progressive Nonfluent Aphasia/diagnostic imaging , Primary Progressive Nonfluent Aphasia/genetics , Progranulins
15.
Brain Pathol ; 26(2): 177-85, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26260327

ABSTRACT

Transactive response DNA binding protein 43 (TDP-43) proteinopathy is the major hallmark of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. It is also present in a subset of Alzheimer's disease cases. Recently, few reports showed TDP-43 changes in cognitively normal elderly. In Caucasians, TDP-43 proteinopathy independently correlate with cognitive decline. However, it is challenging to establish direct links between cognitive and/or neuropsychiatric symptoms and protein inclusions in neurodegenerative diseases because individual cognitive reserves modify the threshold for clinical disease expression. Cognitive reserve is influenced by demographic, environmental and genetic factors. We investigated the relationships between demographic, clinical and neuropathological variables and TDP-43 proteinopathy in a large multiethnic sample of cognitively normal elderly. TDP-43 proteinopathy was identified in 10.5%, independently associated with older age (P = 0.03) and Asian ethnicity (P = 0.002). Asians showed a higher prevalence of TDP-43 proteinopathy than Caucasians, even after adjustment for sex, age, Braak stage and schooling (odds ratio = 3.50, confidence interval 1.41-8.69, P = 0.007). These findings suggested that Asian older adults may be protected from the clinical manifestation of brain TDP-43 proteinopathy. Future studies are needed to identify possible race-related protective factors against clinical expression of TDP-43 proteinopathies.


Subject(s)
Brain/pathology , TDP-43 Proteinopathies/ethnology , TDP-43 Proteinopathies/pathology , Age Factors , Aged , Asian People , Black People , Brain/metabolism , Cognition , Educational Status , Female , Humans , Male , Prevalence , Severity of Illness Index , Sex Factors , TDP-43 Proteinopathies/metabolism , White People
16.
Brain ; 136(Pt 12): 3738-52, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24136825

ABSTRACT

Alzheimer's disease is the commonest cause of dementia in the elderly, but its pathological determinants are still debated. Amyloid-ß plaques and neurofibrillary tangles have been implicated either directly as disruptors of neural function, or indirectly by precipitating neuronal death and thus causing a reduction in neuronal number. Alternatively, the initial cognitive decline has been attributed to subtle intracellular events caused by amyloid-ß oligomers, resulting in dementia after massive synaptic dysfunction followed by neuronal degeneration and death. To investigate whether Alzheimer's disease is associated with changes in the absolute cell numbers of ageing brains, we used the isotropic fractionator, a novel technique designed to determine the absolute cellular composition of brain regions. We investigated whether plaques and tangles are associated with neuronal loss, or whether it is dementia that relates to changes of absolute cell composition, by comparing cell numbers in brains of patients severely demented with those of asymptomatic individuals-both groups histopathologically diagnosed as Alzheimer's-and normal subjects with no pathological signs of the disease. We found a great reduction of neuronal numbers in the hippocampus and cerebral cortex of demented patients with Alzheimer's disease, but not in asymptomatic subjects with Alzheimer's disease. We concluded that neuronal loss is associated with dementia and not the presence of plaques and tangles, which may explain why subjects with histopathological features of Alzheimer's disease can be asymptomatic; and exclude amyloid-ß deposits as causes for the reduction of neuronal numbers in the brain. We found an increase of non-neuronal cell numbers in the cerebral cortex and subcortical white matter of demented patients with Alzheimer's disease when compared with asymptomatic subjects with Alzheimer's disease and control subjects, suggesting a reactive glial cell response in the former that may be related to the symptoms they present.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Neurons/pathology , Aged , Aged, 80 and over , Analysis of Variance , Cell Count , Female , Humans , Indoles , Male , Neurofibrillary Tangles/pathology , Phosphopyruvate Hydratase/metabolism , Plaque, Amyloid/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...